We use cookies to provide you with a better experience. By continuing to browse the site you are agreeing to our use of cookies in accordance with our Cookie Policy.

logo
  • Engineers & Specifiers
  • Contractors & Installers
  • Wholesalers & Distributors
  • Sign In
  • Create Account
  • Sign Out
  • My Account
Free Subscription
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • PRODUCTS
    • Bath & Kitchen
    • Fire Protection
    • HVAC
    • Hydronics/Radiant
    • Plumbing
    • PVF
    • Tools
  • PROJECTS
    • Commercial
    • Green Building
    • MRO/Retrofit
    • Remodeling
    • Residential
  • HOW TO
    • Design
    • Fire Protection
    • Legal Matters
    • Management
  • BUSINESS
    • Buying Groups
    • Technology
    • Associations
  • CODES & STANDARDS
    • ANSI
    • ASHRAE
    • ASSE
    • Regulations
    • Green Building
    • IAPMO
    • ICC
    • NFPA
  • RESOURCES
    • Media Kit
    • Advertise
    • Contact Us
    • Classifieds
    • Digital Editions
    • Behind the Wall
    • Webinars
    • AHR Live 2023
  • PODCASTS
  • DIGITAL EDITIONS
Home » Hot water heaters and reverse return piping

Hot water heaters and reverse return piping

March 15, 2014
Timothy Allinson
No Comments

I can always tell from the questions I get from our guys in the field when there is an issue that is poorly understood and improperly or insufficiently expressed or detailed on project construction documents. Those issues usually warrant discussion in an article due to their seemingly pervasive misunderstanding. The specific dilemma over the past week or so had to do with the piping of traditional water heaters and boilers and the concept of a reverse return piping arrangement.

For starters, water heaters are for the most part pretty unintelligent pieces of equipment. They contain a thermostat with set points. When the temperature in the heater reaches its low temperature set point it turns on. When the heater reaches its upper temperature set point it turns off. Pretty basic. There are larger, more sophisticated heaters with staged firing such that burners turn on in sequence as a function of demand, but even those staged boilers benefit from reverse return piping.

What is reverse return piping? To use a term popular in both manufacturing and asset-management, it would correlate to LIFO — last in, first out. With respect to water heaters or boilers, this term only pertains to systems with multiple heaters. For a single water heater or boiler it would not apply. When you have multiple heaters serving the same area or pressure zone of a building, the reverse return concept comes into play.

The opposite of LIFO is FIFO — first in, first out. This is the simpler, and seemingly more intuitive, way of piping water heaters and boilers but, in practice, it creates problems. Water, we all know, seeks its own level and follows the path of least resistance. Since water heaters piped in parallel generally do not have alternating controls the way most pump sets do, heaters should be piped such that the path of friction through each heater is equal and balanced. If the path through one heater has less resistance than the path through the others, then that heater will always act as the “lead” heater and will fire more frequently, leading to uneven wear of the heaters.

Figure No.1 shows what is referred to as a direct return piping arrangement (FIFO). As stated, at a glance it is seemingly more intuitive. But a second glance will obviate the fact that heater No.1 has less friction than heaters Nos. 2 and 3. Accordingly, during low and medium flow conditions, most of the water will flow through heater No.1, and it will carry the vast majority of the low-demand water heating requirements. Heater No. 2 will fire less often, and heater No. 3 will only fire during peak demand and as required to maintain standby losses.

Figure No. 2 shows a reverse return piping arrangement. It is slightly less intuitive by nature, but closer scrutiny reveals that the friction losses are balanced, or more nearly balanced, than the direct return system. Heater No. 1 will have the least amount of friction on the inlet but the most on the outlet. Heater No. 3 will have the most friction on the inlet but the least on the outlet. Heater No. 2 will have a comparable amount of friction balanced between the inlet and outlet. In this arrangement, the flow through all three heaters should be nearly the same regardless of demand, and each heater will fire for approximately the same number of hours.

It should be noted that some manufacturers will set the thermostats on their heaters to help compensate for the imbalance when their heaters are installed in a direct return configuration. If the heaters have precision digital controls, in the case of Figure No. 1, heater No. 1 might be set to fire at a temperature of 118 F, heater No. 2 might be set to 120 F, and heater No. 3 might be set to 122 F. As such, the heater that receives the least flow (No. 3) will also be the first to fire, based on the higher set temperature. By adjusting the thermostats in this manner, the individual heater controls will help compensate for flow imbalance associated with the direct return system.

Reverse return piping systems also have relevance in certain pumping and hydronic systems. For domestic water pumps, the benefits of reverse return are negligible, since flow rates are generally relatively low and pump pressures are usually fairly high. Since pumps alternate based on the pump controller, rather than based purely on hydraulics, reverse return can be ignored.

For condenser water or chilled water systems, flow rates are relatively high and pump pressures are relatively low. In this case, reverse return can have greater benefit such that each pump will run at the same operating point or on the same flow curve (for VFD systems). For high horsepower pumps with high flow and low head, this balanced operation can make a difference in long term overall system performance.

In hydronic systems where flow rates are relatively low and system balance is essential, minimizing hydraulic imbalance is important. Even though the hydraulic loops are balanced with control valves or small circ pumps, often of fractional horsepower, the hydraulic balance of reverse return helps the system stay in balance and demands less of the control valves or pumps. Secondly, after such a system shuts down and later starts up, the reverse return hydronic system will establish balanced operation in a shorter period of time.

The only downside to reverse return systems is additional piping. The added cost of this pipe length is usually negligible compared to the benefits. But in systems where achieving reverse return requires long additional pipe runs, or where the piping is so expensive that the cost of even small pipe runs is substantial, then the extent of the benefit has to be evaluated against the added cost.

Timothy Allinson is a senior professional engineer with Murray Co., Mechanical Contractors, in Long Beach, Calif. He holds a bsme from Tufts University and an mba from New York University. He is a professional engineer licensed in both mechanical and fire protection engineering in various states, and is a leed accredited professional. Allinson is a past-president of aspe, both the New York and Orange County Chapters. He can be reached at laguna_tim@yahoo.com.

Engineers & Specifiers Plumbing
  • Related Articles

    Lochinvar Reverse Indirect Water Heater

    Tankless water heaters ensure unfailing hot water supply for Florida jail

    AquaMotion Kit Resolves Hot Water Recirculation Issues for Tankless Heaters

  • Related Events

    Watts "Smarter, Safer Hot Water" Webinar

Pe allinson 0
Timothy Allinson

RV plumbing

More from this author
You must login or register in order to post a comment.

Report Abusive Comment

Most Popular

  • Chicago Plumber’s Union Dyes Chicago River Green for St. Patrick’s Day 2023

  • Everything You Wanted to Know About Orangeburg Pipe (But Were Afraid To Ask)

  • Vote Now! Plumbing Design of the Year: A Readers’ Choice Award

  • The Basis for Most Plumbing Codes

Featured Video

Caleffi video thumb

The Gold Standard: Separation with NO Compromise

Industry Events

  • 21Mar

    NFMT 2023

    Baltimore, MD
  • 26Mar

    MCAA 2023 Annual Convention

    Phoenix, AZ
  • 29Mar

    2023 SFPE European Conference & Expo

    Berlin ,
More Events

Subscribe to our newsletters & stay updated

Subscribe & Learn More

  • Tw03 2023 cover
    Learn More
  • Pe03 2023 cover
    Learn More
  • Phc03 2023 cover
    Learn More
  • Es 2022
    Learn More
Subscribe

More from PHCP Pros

  • Editorial Team
  • Home
  • Contact Us
  • About
  • Advertise

Follow Us

© 2023 All Rights Reserved

Design, CMS, Hosting & Web Development | ePublishing